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The laminar-turbulent transition process in a parallel boundary-layer with Blasius 
profile is simulated by numerical integration of the three-dimensional incompressible 
Navier-Stokes equations using a spectral method. The model of spatially periodic 
disturbances developing in time is used. Both the classical Klebanoff-type and the 
subharmonic type of transition are simulated. Maps of the three-dimensional 
velocity and vorticity fields and visualizations by integrated fluid markers are 
obtained. The numerical results are compared with experimental measurements and 
flow visualizations by other authors. Good qualitative and quantitative agreement 
is found a t  corresponding stages of development up to the one-spike stage. After the 
appearance of two-dimensional Tollmien-Schlichting waves of sufficiently large 
amplitude an increasing three-dimensionality is observed. In particular, a peak- 
valley structure of the velocity fluctuations, mean longitudinal vortices and sharp 
spike-like instantaneous velocity signals are formed. The flow field is dominated by 
a three-dimensional horseshoe vortex system connected with free high-shear layers. 
Visualizations by time-lines show the formation of A-structures. Our numerical 
results connect various observations obtained with different experimental tech- 
niques. The initial three-dimensional steps of the transition process are consistent 
with the linear theory of secondary instability. In  the later stages nonlinear 
interactions of the disturbance modes and the production of higher harmonics are 
essential. 

We also study the control of transition by local two-dimensional suction and 
blowing at  the wall. It is shown that transition can be delayed or accelerated by 
superposing disturbances which are out of phase or in phase with oncoming 
Tollmien-Schlichting instability waves, respectively. Control is only effective if 
applied a t  an early, two-dimensional stage of transition. Mean longitudinal vortices 
remain even after successful control of the fluctuations. 

1. Introduction 
The process of laminar-turbulent transition in boundary layers has been the 

subject of many experimental and theoretical studies. Transition under ‘natural ’ 
conditions is influenced by a variety of factors, and different routes to turbulence 
have been discovered. Great progress has been made in the investigation of the 
classical problem of ‘ ribbon-induced ’ transition in the Blasius boundary layer, which 
is also considered in the present work. Here the transition process is initiated by 
monoharmonic two-dimensional instability waves, the so-called Tollmien- 
Schlichting waves, under carefully controlled conditions. The experiments by 
Klebanoff, Tidstrom & Sargent (19621, Kovasznay, Komoda & Vasudeva (1962), 
Hama & Nutant (1963) and Wortmann (1977) demonstrated that the onset of three- 
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dimensionality is an essential feature in the transition process. Williams, Fasel & 
Hama (1984) measured all three components of the instantaneous velocity field over 
a whole time-period of the process and over a wide range in the normal and spanwise 
direction. Their experimental results will be used for a comparison with our 
numerical simulations. I n  the following we briefly introduce some basic facts on the 
transition process. More detailed reviews are given by Tani (1969), Arnal (1984) and 
Herbert (1988). For further information on recent work we refer to the conference 
proceedings edited by Eppler & Fasel (1980) and Kozlov (1985). 

Transition to turbulence proceeds through a sequence of regular stages. At a 
certain downstream distance the initially two-dimensional Tollmien-Schlichting 
waves develop a significant, almost periodic variation in the spanwise direction. The 
fluctuations grow rapidly a t  the spanwise so-called ‘ peak ’ positions, whereas in 
between a t  the ‘valley’ positions the growth occurs only further downstream. At the 
peak positions sharp low-velocity pulses in the instantaneous velocity signals, the so- 
called ‘spikes ’, are observed. The spike signals are connected with instantaneous free 
high-shear layers. Simultaneously with the onset of three-dimensionality a system of 
mean longitudinal vortices develops. Further downstream the regular flow structures 
break down forming new, smaller structures. Local spots of turbulence are generated 
which grow as they travel downstream until a fully turbulent boundary layer is 
formed. From their experimental visualizations with hydrogen bubbles Hama & 
Nutant (1963) inferred that the high-shear layer is connected with an instantaneous 
three-dimensional vortex loop. In  the smoke visualizations by Saric, Kozlov & 
Levchenko (1984) this vortex appears as a downstream-travelling A-shaped 
structure. Depending on the parameters basically two patterns of A-structures are 
observed : the classical K-type (named after Klebanoff), where the lambdas follow 
each other a t  the same spanwise position, and the subharmonic type, where 
subsequent spanwise rows of lambdas are shifted by half a wavelength in the 
spanwise direction. The subharmonic type was also investigated experimentally by 
Kachanov & Levchenko (1984). It may occur a t  smaller TollmienSchlichting 
amplitudes than the K-type. Kachanov (1987) evaluates experimental data on K- 
type transition from the viewpoint of the wave-resonance concept. 

Theories have so far been successful only in describing the first stages of the 
transition process. The instability of the laminar boundary layer with respect to 
small disturbances is well described by the classical linear stability theory. The 
amplification of three-dimensional disturbances has been explained by a weakly 
nonlinear wave resonance (Craik 1971) and later by a linear secondary instability 
(Orszag & Patera 1983 ; Herbert 1983, 1988). According to the secondary instability 
theory the basic flow with superimposed finite-amplitude Tollmien-Schlichting 
waves becomes unstable with respect to small three-dimensional disturbances. Both 
the K-type and the subharmonic type are described. At given parameters a band of 
spanwise wavelengths may be amplified, the amplification rate being strongly 
dependent on the two-dimensional wave amplitude. 

Transition to turbulence in the Blasius boundary layer has also been investigated 
by numerical simulations, solving directly the three-dimensional time-dependent 
Navier-Stokes equations (Orszag & Patera 1983 and Wray & Hussaini 1984 for the 
K-type, Spalart & Yang 1987 for the subharmonic and the mixed type). Good 
agreement with experiments has been obtained even in the stages of nonlinear 
development up to the spike stage (Wray & Hussaini 1984). In  plane Poiseuille flow, 
where very similar phenomena are observed, simulations have been reported among 
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others by Orszag & Ke11s (1980), Orszag & Patera (1981, 1983), Zang & Hussaini 
(1985a) and the present group (Kleiser 1982; Kleiser & Schumann 1984; Kleiser & 
Laurien 1 9 8 5 ~ ) .  A review of numerical simulations of transition is given by Zang & 
Hussaini (1987). 

I n  the present paper we report numerical simulations of the transition process in 
a model of the Blasius boundary layer (cf. Laurien 1986; Laurien & Kleiser 1986). 
The model of timewise developing, spatially periodic disturbances in streamwise and 
spanwise directions is used. The numerical results are compared in detail with 
experimental data by other authors. The aim of this study is a further documentation 
and a better understanding of the three-dimensional stages of the transition process. 
As an application of our method, the interactive control of the transition process by 
wave superposition is simulated. 

Control of the transition process is of considerable technical interest. Turbulent 
boundary layers have a much higher wall-shear stress and heat flux compared to 
laminar Bows. Thus a delay of transition may reduce the drag on slender rigid bodies. 
Triggering of transition, on the other hand, is needed in wind-tunnel testing to 
simulate a higher Reynolds number flow in a given facility. Well-established 
boundary-layer control techniques are based on a stabilization of the mean laminar 
boundary-layer profile. These techniques include profile design with suitable pressure 
gradients, continuous wall suction and wall cooling (in air). A more recent boundary- 
layer control technique is based on a direct control of the instability waves. Here 
controlled disturbances are locally superposed on the disturbances already present in 
the flow in order to reduce their amplitude. This control technique has been referred 
to as ‘active ’ (or ‘interactive ’). Experimental investigations have demonstrated that 
a delay or a triggering of Tollmien-Schlichting waves (Milling 1981 ; Liepmann, 
Brown & Nosenchuck 1982) and even a delay of breakdown to turbulence (Liepmann 
& Nosenchuck 1982; Thomas 1983; Strykowski & Sreenivasan 1985) is possible. In  
these experiments two-dimensional periodic disturbances are locally introduced 
downstream of a first wave generator by a second wave generator. The second wave 
generator is driven with the same frequency as the first and with a suitable phase 
shift and amplitude either to damp or to amplify the oncoming waves. Also feedback- 
loop control has been attempted. Experimental visualizations and hot-wire 
measurements of the controlled boundary layer (Thomas 1983) indicate that the 
disturbances remaining in the flow after control are different from linear waves. The 
flow appears to be three-dimensional downstream of the second wave generator even 
if transition has been delayed. 

Theoretical work on active control of transition by wave superposition is rather 
scarce. Metcalfe et al. (1986) studied the control of two-dimensional Tollmien- 
Schlichting waves by periodic wall forcing. The behaviour of three-dimensional 
finite-amplitude disturbances has only been studied in boundary layers with steady 
wall heating (Zang & Kussaini 1985b). I n  ‘$6 of the present study we investigate the 
effect of a control by two-dimensional periodic suction/ blowing a t  the wall on the 
two- and three-dimensional disturbances already present in the flow. No attempt has 
been made to simulate a control experiment quantitatively, but potential and 
limitations of interactive transition control are illuminated. A corresponding 
investigation in Poiseuille flow has been undertaken by Kleiser & Laurien (1985b). 
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2. Mathematical model 
In our numerical investigations we use a simple mathematical model of the 

transition process in the Blasius boundary layer. Similarly as done in classical linear 
stability theory, we investigate the development of disturbances in a parallel 
boundary layer a t  a fixed downstream position 2;. The undisturbed boundary layer 
is defined by the Blasius profile V,(x,) where x3 denotes the non-dimensional wall 
distance. All quantities are non-dimensionalized with the free-stream velocity U, and 
the reference length S, = (vZ',/U,)i, where v is the kinematic viscosity. Thus the 
Reynolds number becomes R = Urn S J v  = (U, Z',/v)g. The boundary-layer thickness 
and the Reynolds number are kept fixed in our simulations, neglecting the 
streamwise growth. As in corresponding transition experiments, the dominant initial 
disturbance is a two-dimensional Tollmien-Schlichting wave. We use a coordinate 
system x1 = xi - cTs t moving downstream with the phase velocity cTs of that wave 
(figure 1) .  Because of Galileian invariance this is equivalent to a calculation in the 
rest frame, but it does reduce time-differencing errors and enables one to observe the 
formation of transitional flow structures roughly a t  a fixed place within the 
computational box. The disturbances in our model are periodic in the streamwise 
(xl) and spanwise (x2) directions with given wavelengths L,  and L,. Beginning with 
an initial velocity distribution specified later the disturbances develop in time, 
whereas in t,ransition experiments a time-periodic flow develops downstream. 
Accordingly, the downstream and time coordinates will be interchanged to  compare 
our results with experimental data. For example, we define the (local) mean of the 
velocity component uj by 

ujdxl ( j  = 1,2 ,3) ,  ( l a )  r - u. = - 
A 1 0  

and the root-mean-square (r.m.s.) fluctuation as 

respectively. The basic equations of motion are the Navier-Stokes equations 

a U  1 
- = u x curlu-Vq+-Au+f, 
at R 

divu = 0, (3) 

where u is the velocity, q the pressure head and f = ( fl, 0 , O )  a forcing term. The latter 
is independent of x1 and x, and is introduced in order to define the global mean (i.e. 
(xl, x2)-averaged) velocity profile. Two options have been used for the choice of fi. In  
the first, fl is defined formally such that it cancels the instantaneous (xl, 2,)-averaged 
values of the viscous stress and the Reynolds stress (see equation (1) of Spalart & 
Yang 1987), i.e. the (xl,x,)-averaged streamwise velocity is frozen a t  the Blasius 
profile. Thus the nonlinear distortion of the global mean flow is neglected in this 
model. However, the local mean flow defined in (1 a )  still depends on x2 and x3. The 
results presented herein have been obtained with this model. The second option is the 
choice fl = fB : = - ( l /R)  d2U,/dxi, which preserves the initial Blasius profile if no 
disturbances are present. This option has been used in a comparison run in order to 
demonstrate that the neglect of the mean flow distortion does not introduce 
significant errors into the disturbance development in our simulations (see the 
discussion below and a t  the end of $4). 
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FIGURE 1. Coordinate system and integration domain. 

The boundary conditions are the conditions of periodicity in the horizontal 
directions and 

u(x,, x 2 ,  x3 = O ,  t ,  = ( -cTS,  0 ,  u3W(51, t ) )  (4) 

u(xl> x 2 , x 3 +  l )  = ( l P c T S ,  0 ,  O ) .  (5 )  

In (4) uSW is a prescribed normal velocity at the wall with zero mean flux which will 
be used to model wall suction/blowing. It is zero in uncontrolled transition. The 
initial velocity distribution is assumed in the form 

u(xj t = 0) = U+AT,uTS +A,, u3D, ( 6 )  

consisting of the basic flow U = (Ul-cTs,O, 0) ,  a two-dimensional Tollmien- 
Schlichting wave uTS with streamwise wavelength L,, (wavenumber aTs) and a pair 
of oblique waves with wavenumbers (a1, f a 2 ) .  Here a, = 27r/L, ( j  = 1,2) ,  and 
aTS = 27r/LTs. For K-type transition we use Ll = LTS, and for subharmonic transition 
L, = 2LTS. The initial disturbances uTs and u~~ are individually normalized such that 
a t  x2 = 0 their streamwise components are the pure cosine functions cos (aTsx l )  and 
cos (a ,  zl) at the respective wall distance where the maximum amplitude occurs. The 
least damped OrrSommerfeld eigensolutions are always taken. All of our initial 
disturbances are ' spanwise-symmetric ', i.e. 

u3( -x2) = (-  l)i"Uj(X2). (7) 

This initial symmetry is preserved during time integration of the Navier-Stokes 
equations. Exploiting this symmetry reduces the computational expenses by a factor 
of two. 

Our mathematical model of the transition process is certainly a crude one, and its 
relevance to the actually observed process will have to be established by comparison 
with experimental data. Two aspects deserve further discussion : the treatment of the 
mean flow, and the use of temporally growing, streamwise-periodic disturbances. 

The model of downstream-periodic disturbances cannot take into account the 
effects of the development of the disturbance within a single wavelength. For low 
amplification rates this effect is certainly small and the temporal approach is well 
justified. When the amplification becomes larger, as in the late stages of transition, 
it is no longer obvious that downstream-periodic disturbances are still able to 
describe the real physical process. However, Herbert (1988) points out that the 
restriction of Gaster's (1962) transformation to small growth rates does not apply to 
the secondary instability. In fact, the spatially periodic model has been used with 
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great success in all of the numerical simulations referred to in the introduction, both 
for plane Poiseuille flow and for the Blasius boundary layer. In contrast to these 
temporal simulations, Fasel, Rist & Konzelmann (1987) investigate spatially 
developing disturbances in a non-parallel boundary layer using inflow/outflow 
boundary 'conditions. These simulations have been confined to the early three- 
dimensional stages of transition. 

While most simulations of transition have used the temporal approach, the mean 
flow has been treated slightly differently by the various authors. Orszag & Patera 
(1983) and Wray & Hussaini (1984) allowed the undisturbed mean flow to develop on 
a diffusive timescale towards an error function profile, which has different primary 
stability characteristics (see Spalart & Yang 1987). A number of authors have used 
a forcing term as in (2) in order to make the desired undisturbed velocity profile an 
exact solution of the Navier-Stokes equations. Zang & Hussaini (1985, 1987) used 
the option fi = fB defined above. This option is equivalent to prescribing the basic 
flow Q ( x 3 )  and to solve the complete nonlinear disturbance equations for the 
deviation from this basic flow. Spalart & Yang (1987) use a more refined model where 
a temporally growing Blasius profile is retained in a moving reference frame by a 
time-dependent forcing term. This allows them to follow the disturbance develop- 
ment over a longer streamwise distance than is intended in the present work, 
where, as in the experiment of Williams el al. (1984), the relatively short three- 
dimensional stage of transition up to the beginning of the spike stage is the main 
interest. Forcing terms in the Navier-Stokes equations that produce a desired 
parallel basic flow have also been used by Milinazzo & Saffman (1985) and Huerre 
(1987). 

3. Numerical method 
To solve equations (2)-(5) numerically we employ a spectral method in space and 

finite differences in time. The spectral discretization is based on Fourier expansions 
in the horizontal directions and a Chebyshev collocation matrix method (cf. Gottlieb, 
Hussaini & Orszag 1984) in the normal direction. Except for the treatment of the 
normal direction, the numerical procedures are essentially the same as described by 
Kleiser & Schumann (1984) and used also by a number of other investigators. The 
method is described in detail by Laurien (1986). Time differencing of (2) by the 
second-order Adams-Bashforth scheme for the nonlinear term N = u x curl u + f and 
the Crank-Nicholson scheme for the linear terms gives 

where r = 2R[un/At+ 1.5Nn-0.5Nn-l]+Aun, un x u(nAt) etc. and At denotes the 
timestep. To decouple the components of (8) and satisfy (3) we use the Poisson 
equation for the pressure and the influence matrix technique to obtain the correct 
pressure boundary conditions (Kleiser & Schumann 1980, 1984). Equations 

1 
2R 

Aq"+l = -div rn, (9) 
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together with (4), (5)  and (8) give a sufficient condition for (3). In the horizontal 
directions we expand any dependent variable, e.g. u,  in a-Fourier series 

u(x ,  t )  = C X 6(kl,  k,, x,, t )  exp (ik, a1 z1 + ik, az z2), (12) 
ki ka 

where lkjl < I&, aj = 2n/Lj, j = 1,2, i = d - 1.  For the remainder of this section 
all variables u, q, r ,  uQW are understood as complex Fourier coefficients a t  the new 
time layer n +  1 .  The expansion (12) is truncated outside the wavenumber range 
Ik,J/N, + Ik,l/Nz < 2 in order to reduce aliasing errors in the computation of nonlinear 
terms by the pseudospectral method. For each mode (kl, k,) + (0,O) the system (4), 
(8)-(11) is reduced to a set of Helmholtz equations with Dirichlet boundary 
conditions which are solved sequentially. The numerical method described below 
ensures that the boundary conditions a t  infinity, (5) and (l l) ,  are always satisfied. 
Therefore only the wall pressure values are unknown and the influence matrices are 
reduced to scalars in the present case. 

In order to apply a Chebyshev spectral method in the normal direction x3 the semi- 
infinite domain 0 < x3 < 00 is transformed onto the interval 

0 < q < 1 by q = exp(-x3/y), 

where y is a free parameter (Spalart 1984). Formally the functions to be 
approximated are extended to the half interval - 1 < q < 0 by zero. Accordingly, 
the computational dependent variables, which have to vanish at  infinity, are chosen 
as the physical variables minus their value a t  infinity, e.g. U, - 1. In the trans- 
formed variable 7 we expand any function u into Chebyshev polynomials 
T,(q) = cos (k c0s-l 7) and use collocation in the points qj  = cos (n j /M) ,  j = 0, . . . , M :  

Typical functions of interest are of the form u(x,) = exp ( -  bx,) (b > 0 ) ,  or, in the 
transformed variable, u(q) = 0, - 1 < q < 0;  u = q b y ,  0 < 7 < 1. In  general, some 
higher derivatives possess a singularity a t  q = 0, destroying infinite-order con- 
vergence. However, if by is large enough (of order lo), the coefficients decay very 
rapidly (e.g. by a factor of within k < 50). (More rapid convergence a t  smaller 
values of by is obtained using the modified transform x3 = - y(ln7- y’(lnq)2) with y’ 
of order 5 (F. Meyer, private communication, 1987)). If we choose M even, then all 
computational variables vanish at the collocation point q = O(x, = a), and only the 
N3 = grid point values in x , ~  = - y In qj ,  j = 0, . . . , N3 - 1, need to  be computed and 
stored (calculations with M odd, N3 = $(M+ 1) work as well). The exponential 
mapping of the semi-infinite domain to the interval [0,1] rather than [ - 1 , 1 ]  avoids 
placing too many collocation points far away from the wall. Alternative approaches 
are discussed in Spalart (1986) and Canuto et al. (1987). To calculate pth derivatives 
we use the matrix collocation method, 

where {Dj!)} is a matrix given e.g. by Gottlieb et al. (1984). In  x,-space (14) is 
transformed into 
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( j , k = o ,  . . . ,  

and the matrices {Bji)} for p > 1 are calculated by applying the chain rule to the 
right-hand side of (16). 

A straightforward application of the collocation discretization of (4), (5), (8)-( 11)  
using the influence matrix technique leads to approximation errors in the continuity 
equation. These can be eliminated, at minimal computational expense, by 
superposition of precomputed auxiliary solutions in the same manner as the ‘tau 
errors’ arising in the tau method (Kleiser & Schumann 1980; see also the thorough 
discussion in the book by Canuto et al. 1987). The correction procedure was 
implemented in our code only after the present results had been obtained. However, 
the maximum values of divu in these transition simulations are on the order of 
during the early stages, and the differences to the exactly divergence-free solution 
are insignificant. In the later spike stages the divergence-free solution is clearly 
superior. I n  addition, the correction procedure increases the stability bound on the 
timestep. 

The method was tested first by solving the Helmholtz problem 

U” - b2U = 0, (17a) 

u(x3 = 0) = 1, U(5,’ CO) = 0, 

with the solution u = exp ( -  bz,). This serves as a model for the inhomogeneous 
Helmholtz problems to which the full three-dimensional problem is reduced. In  the 
calculations the wall boundary condition is enforced, while the boundary condition 
a t  infinity is satisfied implicitly. The maximum absolute error of the solution versus 
N, is shown in figure 2 for various values of by.  The accuracy is excellent for by of 
order 10. For by % 10, 8 x 2(by)t  grid points are needed to resolve the boundary 
layer a t  7 = 1.  As there is an optimal stretching parameter y for a given decay rate 
b, y should be adapted to  the actual range of decay rates b of the problem a t  hand 
to obtain optimal convergence. 

As a second test we solved the Orr-Sommerfeld eigenvalue problem. The problem 
was formulated as an algebraic eigenvalue problem and was solved for a wide range 
of parameters R and aTS. y = 20 gave the best approximation within the parameter 
range of interest and was also used in our simulations. The rapid convergence (like 
exponential) of the method for the first eigenvalue c = c,  + ic, with increasing number 
of collocation points N3 is demonstrated in figure 3 ,  using a point near the nose of the 
neutral curve (R x 302, aTS x 0.175) and the reference value given by Spalart 
(1984). The levelling-off of the error a t  e x lo-’ is due to  the finite precision of the 
numerically computed Blasius profile. Higher eigenvalues of the discrete part of the 
spectrum are also well approximated. I n  addition the algebraic eigenvalue problem 
yields an approximation to  the continuous spectrum which moves towards the exact 
value c,  = 1 with increasing N3. 

The three-dimensional computer code is implemented on a Cray-1S with the 
vectorized innermost loop running over the ( k l ,  k,)-plane. As the left-hand sides of 
the discretized Helmholtz equations differ only on the diagonals an efficient solution 
of the 4 x Nl x N2 real, linear, full N, x N, equation systems is possible by using a matrix 
diagonalization which can be performed simultaneously for all wavenumbers (k,, k,) 
(Patera & Orszag 1981). Thus only O(P,) operations per timestep and Fourier 
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FIGURE 2. Maximum error E for the solution of the Helmholtz test problem (17) obtained with the 
Chebyshev collocation method for various values of by. 

0 

FIGURE 3. Error E in least damped Orr-Sommerfeld eigenvalue c = c, + ic, calculated with the 
Chebyshev collocation method us. number of collocation points N,. 

mode are needed, as opposed to O(E) for matrix inversion. The diagonalization is 
performed once in a preprocessing step. An improved version of the code which 
exploits the symmetry of (7) needs about 2.3 s of CPU time per timestep for a 
Nl x N2 x N3 = 32 x 32 x 48 discretization. 

4. Results for K-type transition 
I n  this section the simulation results for K-type transition are documented. We 

compare our results to experimental investigations qualitatively and quantitatively. 
We choose the simulation parameters R = 407, aTS = 0.157 and a2 = 0.233, which are 
fitted to the experiment of Williams et al. (1984). We use the initial velocity 
distribution for the K-type according to (6). The initial disturbance amplitudes are 
A,, = 0.015 and A,, = 0.001. From the linear theory the least damped eigenvalue 

14 FLM 199 
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c = c, + ic, = 0.3727 + i0.0062 is obtained. Thus the Tollmien-Schlichting period 
is TTs = 2n/(c,aTS) = 107.4. The numerical parameters used are Nl x N, x N3 = 
1 6 x 1 6 ~ 4 8  and At=0.5 up to t=1100 and N,xN2xN3=32x32x48,  At=0.1 
in the time interval 1100 < t < 1340. No numerical instability - which is well dis- 
tinguishable from the physical instability - has been observed for this parameter 
combination. 

4.1. Development of r.m.s. JEuctuations and mean $ow 
The time-development of downstream-averaged quantities in the simulation 
corresponds to the downstream development of time-averaged experimental 
quantities. The timewise development of the maximum (over x3) longitudinal r.m.s. 
fluctuation u;,,, = maxu;(x3) a t  different spanwise positions is shown in figure 4. 
For t < 750 the flow is almost two-dimensional. Here the fluctuations grow almost 
exponentially. At later times the three-dimensional peak-valley splitting occurs as 
the fluctuations grow rapidly a t  x2 = 0 and x2 = L, (peaks) and less rapidly a t  
positions in between (valleys). Figure 5 shows the distribution of ui in the (x2,x3)- 
plane a t  three stages of development. At t = 500 the distribution is still almost the 
same as for a two-dimensional Tollmien-Schlichting wave. In  the later (three- 
dimensional) stages the peak-valley distribution becomes visible, especially a t  
t = 1260 where it is very pronounced. 

In  the (x2,x3)-plane a mean secondary flow develops along with a corresponding 
spanwise-periodic deformation of the mean profiles. Figure 6 shows isolines of the 
stream function $(x,, x 3 )  of this flow defined by a$/ax, = q, a$/ax3 = -q. The 
streamlines indicate a pair of counter-rotating vortices with their axes in the 
streamwise direction. At t = 1100 one pair of vortices has developed. The vortices 
become stronger with time. At the peak position (x, = 0) slowly moving near-wall 
fluid is transported away from the wall, whereas at the valley position x2 = &L2 fast 
fluid is transported towards the wall. In  the later stages a second pair of vortices 
develops a t  the valley position at a somewhat larger distance from the wall, rotating 
in the opposite direction to the first pair. A very similar development of the flow has 
been observed in experiments, e.g. by Klebanoff et al. (1962). An early theoretical 
model for the appearance of these mean longitudinal vortices has been proposed by 
Benney and Lin (see Benney 1964). We emphasize here that the mean flow field just 
considered contains only the averaged disturbance values, which a t  the later stages 
are significantly smaller than the local peaks of the instantaneous disturbances. A 
quantitative comparison of the mean and instantaneous vorticity field based on the 
present simulation data is given in Hama et al. (1987). 

The stages of time-development in the simulation agree very well with stages of 
downstream development in experimental investigations. In  order to compare our 
results quantitatively with experimental data we choose the simulated flow field a t  
t = 1260 and compare with the experiments of Williams et al. (1984) a t  the station 
x = 60 ern. Figure 7 shows uImax as a function of x2 and figure 8 shows ui(x3) at 
different spanwise positions. The quantitative agreement is considered very good if 
we take into account the experimental difficulties in establishing a clean, regular flow 
field. In  particular, no control of the three-dimensional development was attempted 
in the experiment. 

4.2. Instantaneous j b w  field 
In  experiments instantaneous quantities are measured a t  fixed spatial positions as 
functions of time. The corresponding quantities in our model are functions of x1 at  
fixed positions x,, x3 and a t  fixed simulation times t .  Figure 9 gives simulation results 
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FIQURE 4. Time-development of the maximum longitudinal r.m.8. fluctuation uirnax at 
various spanwise positions x2. 

FIQURE 5. Distribution of ui in the (zz, %,)-plane at (a) t = 500 ; ( b )  t = 1150 ; (c) t = 1260. 
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FIGURE 6. Streamlines of the mean secondary flow at (a) t = 1100; (a) t = 1180; (c) t = 1220; 
( d )  t = 1260. 
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FIGURE 7. Distribution of over the span. -, simulation, t = 1260; 0, experiment 
Williams et al. (1984), 5 = 60 cm. 

for 'time signals' of the u1 velocity in various stages of the transition process. The 
initially sinusoidal signal becomes distorted in later stages and finally forms a spike- 
like shape. 

I n  the following we compare the simulated flow field in the three-dimensional space 
at the fixed simulation time t = 1260 with the experimental data of Williams et al. 
(1984) in the time-space frame (i.e. the three coordinates time, spanwise and normal 
direction) a t  the fixed downstream position x = 60 cm. Figure 10 shows a sequence 
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FIGURE 8. Distribution of u; over the normal coordinate x3 at different spanwise positions. (a )  
z,/Lz = 0; ( b )  za/L, = 0.0625; (c) x2 /L ,  = 0.28.-, simulation, t = 1260; 0,  experiment Williams 
et al. (1984), z = 60 cm. 

FIGURE 9. Instantaneous velocity signals at different stages of development : (a)  t = 1180; 
( b )  t = 1260; ( c )  t = 1290. The vertical scale is arbitrary. 
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F I ~ U R E  10. Profiles of instantaneous downstream velocity over one period at 
zz = 0 and t = 1260. 
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FIGURE 11.  Projections of the instantaneous velocity vectors in the peak plane z2 = 0 in the moving 
frame of reference. The starting points of the vectors are on straight vertical and horizontal 
lines. 

of instantaneous profiles of the downstream velocity u1(x1,x3) in the peak plane. 
Each profile corresponds to  a certain x,-position of the simulation and to a certain 
phase position of the experiment. At some positions the profiles are strongly different 
from the Blasius profile. In  the range 2 6 x3 6 3 there is a region where the velocity 
is nearly constant over the wall distance x3. Above this region large velocity 
gradients au,l/i3x3 occur. This quantity is also the dominant contribution to one 
component of the shear stress. The simulation results are in good agreement with the 
experiment. Projections of the instantaneous velocity vectors in the peak position 
x2 = 0 onto the (x,, x,)-plane in the moving frame of reference are plotted in figure 11. 
In  this plane a finite-amplitude Tollmien-Schlichting wave exhibits a velocity field 
which contains two counter-rotating swirls with their centres, the so-called ‘ cat’s 
eyes’, near the critical layer xBcrit w 1. I n  our diagram an instantaneous upward 
motion is visible in the region where the profiles in figure 10 are nearly constant. At 
the 2,-position of strongest upward motion we observe the largest velocity defect in 
the downstream component, visible as the spike signal in figure 9 ( b ) .  In  the 
remaining x,-period of figure 11 there is a weak downstream velocity. Thus a swirling 
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motion is established, which can be related to one of the cat's eyes of the original 
Tollmien-Schlichting wave, however strongly amplified, contracted to a small 
downstream region, and moved upwards. 

In figure 12 we plot projections of the velocity vector at  different 2,-positions onto 
the (x2, x,)-plane. A symmetric secondary swirling motion becomes visible. The 
centres of the swirls move towards the peak plane x2 = 0 and away from the wall with 
increasing xl. It becomes evident that the velocity field consists of a three- 
dimensional ' vortex loop ' or ' horseshoe vortex '. A perspective view is given in figure 
13. The centres of the swirls may be connected by a horseshoe-shaped line with its 
forward tip in the peak plane x2 = 0 and its backward tips near the valley plane 
closer to the wall. This line is tilted against the horizontal plane. In the peak plane 
x2 = 0 the horseshoe vortex induces the strong instantaneous upward motion 
described above near its forward tip, because here the legs of the vortex loop are very 

FIQURE 12. Projections of the instantaneous velocity vectors onto the planes x,/L, = j x 0.1875. 
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FIGURE 13. Perspective view of projections of the instantaneous velocity vectors a t  different 
2,-positions. The centres of the swirling motions may be connected by a horseshoe-shaped line. 
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FIQURE 14. Isolines of the instantaneous spanwise vorticity at x2 = 0 for t = 1260. 
The thick line corresponds to  w2 = 0.29. 

close to each other. The line connecting the centres is not a vortex line (integral curve 
of the vorticity field). This has been checked by numerical integration of vortex lines 
from the computed vorticity field (see also Williams (1985) and Kleiser & Laurien 
(19854 for a corresponding investigation in plane Poiseuille flow). Vortex lines are 
directed in spanwise direction over most of the spatial domain. Near the vortex loop, 
however, they are directed in negative or positive downstream direction due to a 
locally strong longitudinal vorticity component. Also, the vortex loop is not a vortex 
tube, i.e. surface of vortex lines which intersect a closed curve. Of course, the 
longitudinal mean vortex system obtained by averaging over xl, which is shown in 
figure 6(d) ,  is closely related to the longitudinal vorticity within the horseshoe 
vortex. 

It is also interesting to consider the instantaneous vorticity field of the flow. The 
component w2 = au,/ax, -au,/ax:, is dominant. I n  figure 14 isolines of w2 in the peak 
position x2 = 0 a t  t = 1260 are plotted. Layers of high instantaneous spanwise 
vorticity appear which are detached from the wall. The three-dimensional structure 
of the region of high spanwise vorticity is depicted in figure 15, where isolines with 
w 2  = 0.29 in the three-dimensional space are shown. The surface of constant vorticity 
has a tongue-like structure. The maximum occurs within the tip of the tongue. 
Subsequent tongues overlap each other. Lines of constant magnitude of the 
instantaneous streamwise vorticity (wll = 0.13 are shown in figure 16. The regions of 
large vorticity can be related to the legs of the horseshoe vortex shown in figure 13. 
The instantaneous shear au,/ax, is by far the dominant part of the instantaneous 
spanwise vorticity. For large iso-values the isoline plots of the shear au,/ax, are 
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xnlL2 - 
FIGURE 15. Perspective view of lines of constant instantaneous spanwise vorticity 

w2 = 0.29. Lines below x3 = 1 . 1  have been suppressed for visibility. 

X2lLz- 

FIGURE 16. Perspective view of lines of constant instantaneous streamwise vorticity magnitude 
loll = 0.13 (lines below x3 = 1.1  are suppressed). 

almost identical with w2 vorticity plots. In figure 17 the evolution of a constant-shear 
surface in the transition process is shown. Initially the surface is flat with a slight 
waviness in 2,-direction, which corresponds to the finite-amplitude Tollmien- 
Schlichting wave. In the later development the constant-shear surface folds up and 
forms a tongue-like structure (figure 17b, c) .  In the further development the tongue 
is stretched in downstream direction and finally forms a sharp tip. 

The onset of the formation of the horseshoe vortex has been described among 
others by Hama & Nutant (1963). A spanwise-oriented vortex tube is considered 
which initially corresponds to a local maximum of the vorticity field of the 
Tollmien-Schlichting wave. A slight vertical waviness is amplified in the velocity 
field of the boundary layer, and the vortex tube is stretched and tilted. Our results 
show that during the stages of further development the horseshoe vortex is described 
by its centreline rather than by a vortex tube. I ts  forward tip moves upwards, 
whereas its backward tip moves downwards to the wall. The swirling motion around 
the centreline becomes stronger near the forward and weaker near the backward 
portion. The forward tip enters a region with higher velocity when it moves away 
from the wall. Thus the vortex loop is stretched in the downstream direction. The 
vortex tip induces locally a strong upward motion transporting a lump of slowly 
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FIGURE 17. Lines of constant instantaneous shear au,/ax, = 0.29. (a) t = 500; ( b )  t = 1100; 
(c) t = 1150; (d) t = 1260 (lines beiow z3 = 1.1 are suppressed). 

moving fluid from the vicinity of the wall into a region of higher velocity. The 
oncoming faster fluid meets the slow fluid and forms a high-shear layer on top of the 
upward moving fluid. Very similar features of the instantaneous vorticity field have 
been found experimentally by Williams et al. (1984). We note that the agreement 
with these measurements is qualitatively and even quantitatively good. 

4.3. Visualization by particles 
Several important experimental investigations of boundary-layer transition use 
visualizations by particles. Either hydrogen bubbles, e.g. Hama & Nutant (1963) ; 
Wortmann (1977), or smoke, e.g. Saric et al. (1984), are introduced into the flow. We 
simulate such visualizations in the computed velocity field a t  a fixed simulation time 
t. We introduce a new timescale 7, relevant for the particle motion. Let ((7) be the 
position of a particle in the rest frame, (, the initial position of the particle and 
v(x’,  t )  denote the velocity field in the rest frame. Then the simulated particle motion 
is given by 

(18) 
a t  - = u ( E l - c T S 7 ,  6 2 1  6.3; t ,  ( ( ( O )  = ( 0 ) .  ar 

The particles move passively with the flow. While in experimental visualizations the 
particles move continuously into a region where the transition process is more 
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advanced, in our simulation the velocity field is frozen a t  a certain stage of 
development. Thus i t  is only the integration effect (Hama 1962) which is responsible 
for the formation of particle structures in our visualizations. A row of particles is 
started simultaneously along a straight line. This corresponds to hydrogen bubbles 
started a t  a fixed wire which is pulsed by an electrical current. This line of particles 
is called a time line. A number of rows is started within one period TTs, and this 
process is repeated periodically. We define the phase position of a ‘snapshot’ as 
# = 2nr/TTS. 

First we simulate visualizations with a bubble wire normal to  the wall a t  the peak 
position. Fifteen time lines per Tollmien-Schlichting period, consisting of 100 
particles in the x,-direction each, are started in the velocity field at t = 1260. Figure 
18 shows the result a t  three phase positions. The time lines are strongly distorted. A 
region with almost no particles moves downstream with the wave velocity. This 
region is formed shortly downstream of the wire, when the lump of slowly moving 
fluid described above passes. Above this region very strong distortion of some time 
lines indicates the position of the high-shear layer. Near the wall the structure of 
distinct lines disappears because the particles of an individual line have moved far 
away from each other. 

Figure 19 shows a plan view of visualizations with a spanwise wire at t = 1100, i.e. 
in a stage of beginning three-dimensional development. Again the flow comes from 
the left. The wire is located a t  the wall distance of the critical layer x3crit z 1, where 
Q(x,, ,~~~) = cTs. Per Tollmien-Schlichting period 30 time lines consisting of 100 
particles each are started. The figure shows pronounced spanwise stripes. These are 
caused by the roll-up of the particle sheet as the side view (figure 20) shows. The 
stripes have a slight waviness in the spanwise direction caused by the emerging three- 
dimensional disturbances. The corresponding plan views are shown a t  t = 1200 
(developed three-dimensional stage) in figure 21 and a t  t = 1260 (spike stage) in 
figure 22. In both figures ‘A-vortices’ similar to those observed in experimental 
visualizations are visible. The structure consists of a folded particle sheet. However, 
here the three-dimensional disturbances are much larger (for a discussion of the 
magnitude of the two- and three-dimensional disturbances see the next section). The 
impression of a screw-like structure of the A-legs is caused by the overlapping of the 
folded particle lines. At t = 1260 the line structure in the right-hand portion of figure 
22 has almost disappeared. Particles have been moved far apart from each other and 
are merged in a seemingly unordered fashion. The instantaneous upward motion 
becomes visible in the side view (figure 23). A cluster of particles is swept upward into 
a higher velocity region where it overtakes the rest of the particles started a t  the 
same time. Our simulations of particle visualizations agree very well with those of the 
experiments referred to earlier. 

4.4. Behaviour of Fourier modes 

In this section we discuss the boundary-layer transition process from another point 
of view. The Fourier expansion of our numerical method is used to interpret the 
importance of the various disturbance waves contained in our model. As a measure 
of the magnitude of each wave the maximum (over x3) amplitude of the Fourier 
coefficients of the longitudinal velocity (zi,(k,, k,)J,, is considered. The disturbance 
parts are distinguished as non-fluctuating (k ,  = 0) or fluctuating ( k ,  =k 0), and as two- 
dimensional ( E ,  = 0) or three-dimensional (k, =+ 0).  Non-fluctuating quantities 
correspond to mean (i.e. x,-averaged) quantities by definition. Because of the 
symmetries it is sufficient to consider the modes with El >, 0 and k, 2 0 only. We have 
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FIGURE 18. Time lines starting from a wire in the peak position (side view) at  t = 1260. 
Relative phase positions are (a)  $ = 0'; ( b )  4 = 120'; (c) 4 = 240'. 

multiplied them with factors of 2 (k, = 0 or k, = 0) or 4 (k, > 0, k, > 0) to account for 
the various symmetries. 

The temporal development of the amplitudes of the downstream velocity modes is 
plotted in figure 24 for several wavenumbers (k , ,k , ) .  Figue 24(a) shows the two- 
dimensional modes, figure 24(b) the mean three-dimensional (k, = 0, k, > 0) and 
figure 24 (c) the most important fluctuating three-dimensional disturbances (1, k2). As 
described in $2, the Tollmien-Schlichting mode ( 1 , O )  and two oblique wave modes 
(1, & 1) are initially excited with their linear eigenfunctions of the amplitudes A,, 
and A3,,. As expected, the Tollmien-Schlichting mode produces significant higher 
harmonics (k, > 0 , O )  at the beginning due to its finite amplitude of 1.5 % of the free- 
stream velocity. This initial transient is followed by a state of slow steady growth 
after t x 200 where the finite-amplitude Tollmien-Schlichting wave grows linearly. 
The mode ( 1 , l )  shows an initial transient behaviour up to t x 400. Thereafter it 
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FIGURE 19. Time lines starting from a wire near the critical layer (plan view) at t = 1100. 
(a)  4 = 180'; (b )  4 = 240'; (c) q5 = 300". 

....... 

FIQURE 20. Side view of figure 19. 

becomes amplified in accordance with the secondary instability. The relatively long 
initial transient is influenced by the fact that the streamwise and spanwise initial 
velocity distributions of the (1 ,  & 1) mode differed from the exact primary 
eigenfunction in our runs due to a mistake in the initial velocity computation. 
However, a comparison run with the exact primary eigenfunction did show the same 
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FIQURE 21. Time lines starting from a wire near the critical layer (plan view) at t = 1200. 
(a )  4 = 180'; ( 6 )  4 = 240'; (c) 4 = 300'. 
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FIQURE 22. Time lines starting from a wire near the critical layer (plan view) at t = 1260. 
(a )  4 = 180'; ( b )  q5 = 240'; (c) q5 = 300'. 
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FIGURE 23. Side view of figure 22. 

development after the initial transient, during which the (1 ,  k2)  modes assume the 
shape of the secondary instability eigenfunction. 

In  the region t > 400 two- and three-dimensional disturbances are amplified. We 
can identify the primary and secondary instabilities in our calculation. When the 
three-dimensional disturbances grow to finite amplitudes, the process of nonlinear 
generation of higher harmonic disturbances becomes essential. These disturbances 
grow relatively slowly in 400 < t < 1000. Later they grow very fast. The higher 
spanwise modes grow faster, the larger k, is. When the three-dimensional modes 
reach the amplitudes of the two-dimensional ones, those are also affected a t  t > 1200. 
The whole process is now governed by strong nonlinear interactions between two- 
and three-dimensional disturbances. 

The observed growth of Fourier modes is completely analogous to that obtained 
in the Poiseuille flow transition simulations of Kleiser (1982). Although no 
quantitative comparisons were made, it appears also to be consistent with the 
experimental results of Kachanov (1987) (cf. his figure 8 ( a ) ;  note, however, that the 
amplitude of the nth harmonic measured at the peak position involves a summation 
over all spanwise modes (n, k2)). 

The results reported have been obtained with the first option of our forcing terms 
as described a t  the beginning of $2, i.e. the basic flow is frozen at  the Blasius profile. 
In  order to estimate the influence of the neglected mean flow distortion, a comparison 
has been made to a second run with the same parameters using the second option of 
our forcing terms, fi = fB. In  this comparison run the global mean flow distortion, i.e. 
the maximum deviation of the Fourier mode (0,O) from the Blasius profile, was found 
to be of the order 3 x lop4 during the initial phase of the simulation. This small 
magnitude is expected from the Benney-Lin model (see Benney 1964) where the mean 
flow distortion scales with O(A2,+Ai), A ,  and A ,  being the amplitudes of the 
Tollmien-Schlichting wave and the oblique waves, respectively. After the initial 
transient the mean flow distortion increases continuously, exceeding the value of 
0.01 only shortly before the one-spike stage and attaining the value 0.03 at  the end 
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FIGURE 24. Development of maximum (over x3) Fourier amplitudes of the longitudinal velocity 
&(kl, kl)lmax. (a )  two-dimensional, ( b )  non-fluctuating three-dimensional, (c) fluctuating three- 
dimensional disturbance modes. 

of the simulation. These magnitudes confirm our earlier experience with plane 
Poiseuille flow transition simulations where the mean flow distortion is always 
included. The effect on the disturbance modes ( k l ,  k,) + (0,O) proved also to be very 
small. For example, the absolute difference in u;,,, a t  the peak attained the 
magnitudes 0.004 a t  t = 1000 and 0.01 at the one-spike stage. However, a t  later 
stages the effect of the mean flow distortion will become large and has to be taken 
into account. Therefore, for future work we recommend including the mean flow 
distortion by using the forcing term fB. 

We note here that the Tollmien-Schlichting amplification rates obtained from test 
runs of our numerical code in a wide parameter range are in very good agreement 
with linear stability theory results computed with an accurate Orr-Sommerfeld 
solver. The secondary instability has also been investigated by parameter variation. 
Good quantitative agreement with results of secondary instability calculations has 
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been found. The secondary instability exhibits a threshold behaviour when the 
parameter A,, is varied, i.e. the three-dimensional modes are only amplified if the 
Tollmien-Schlichting amplitude is above a certain threshold. Below this threshold 
they are always damped. This is in accordance with Orszag & Patera (1983) and 
Herbert (1983). 

5. Subharmonic transition 
In this section we describe results of our subharmonic transition simulation. The 

linear amplification of small three-dimensional subharmonic disturbances has been 
investigated by Herbert (1983, 1988). We simulate subharmonic transition up to a 
stage of significant three-dimensionality of the flow structures, and we investigate 
these structures in detail. The parameters of our subharmonic simulations are 
R = 950, a,, = 0.153 and a2 = 0.231. The initial disturbance amplitudes are the same 
as in the K-type simulations. However, we use here L, = 2LTS as noted in the 
description of (6). This means that now the integration domain is twice as large in the 
streamwise direction as in a K-type simulation, and that the fundamental wave is the 
mode (2,O). Initially the subharmonic three-dimensional disturbance modes (1, & 1) 
are excited. We use the same number of horizontal modes (up to 322). Thus the 
streamwise physical resolution is only half that of the K-type simulations. 

5.1. Symmetries of subharmonic velocity jields 
Before presenting the simulation results we note that our velocity fields u ( x ,  t )  show 
a number of symmetries. First, in the pure subharmonic case we have the staggered 
symmetry 

uj ( " 2  $ + x 1 , 2 + z 2  " 1  = u,(zl ,xz),  (19) 

which due to periodicity is immediately generalized to 

(j = 1,2,3,  n, m any integers). For the mean and r.m.s. fluctuation quantities 
therefore 

u; @ + x 2 )  = u;(x2,, 

i.e. periodicity in x2 with G2 holds. Second, all of our initial disturbances were chosen 
to be spanwise-symmetric according to ( 7 ) .  This initial symmetry is preserved during 
time integration of the Navier-Stokes equations. From (7) we obtain for the mean 
components 

T ( n 2 + x 2 )  = (-1)j+1T(n+--x2), (23) 

and for the r.m.s. fluctuations 

ui(n++x,) = u i ( n 2 - x 2 ) ,  
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i.e. these quantities are (anti-)symmetric in x2 about multiples of g2. In  our 
subharmonic simulations both (7)  and (19) hold. Thus the velocity field outside the 
quarter domain 0 < x j  < &, is redundant. A code tailored to this case would need 
only roughly a quarter of the computer time and storage of the general code. For the 
mean and r.m.s. components we obtain 

u i ( n 2 + x 2 )  = u i ( n 2 - x 2 ) .  

Furthermore, for the velocity components a t  the spanwise positions (2n+ 1) L2/4 

holds, i.e. the streamwise and normal components are periodic (and the spanwise 
component anti-periodic) in x1 already with I&. All of t'hese symmetries will become 
apparent in our simulation results. 

5.2. Results and discussion 
First we look a t  averaged (over two Tollmien-Schlichting wavelengths) quantities. 
In  figure 25 the development of ui,,, a t  different spanwise positions is shown (for a 
comparison with the K-type see figure 4). I n  the subharmonic transition the 
development starts again with a two-dimensional stage. At t z 400 a three- 
dimensional development sets in. The r.m.s. amplitudes at x2 = 0 and x2 = &2 

develop identically. This is in contrast to  the K-type development, where these 
spanwise stations correspond to the peak and valley positions. However, the same 
fast growth of the fluctuations can be observed once three-dimensionality has 
occurred. We note that, with the same initial disturbance amplitudes, breakdown 
occurs earlier in the subharmonic case than in the K-type, figure 4. The u; 
distribution is shown in figure 26 a t  a beginning three-dimensional stage (figure 266, 
t =  560) and a developed three-dimensional stage (figure 26c, t=640) .  In  the 
subharmonic case a less pronounced peak-valley structure occurs with half the 
wavelength of the K-type simulation (figure 5). Streamlines of the mean secondary 
flow are plotted in figure 27. Two pairs of counter-rotating mean longitudinal 
vortices of the same strength develop in subharmonic transition. 

The instantaneous velocity signals shown in figure 28 for t = 640 exhibit 
subharmonics. The signal has identical shape a t  the spanwise positions x2 = 0 and 
x2 = g2 but is shifted by one Tollmien-Schlichting wavelength in the x,-direction. 
Thus the spikes appear only every second Tollmien-Schlichting wave at a fixed 
spanwise position, i.e. in a subharmonic manner. However, the spikes are not as 
pronounced in this simulation as in the K-type simulation. This may be partly due 
to the relatively smaller numerical resolution mentioned earlier, although Kachanov 
(1987) and coworkers report observing no sharp spikes in their subharmonic 
transition experiments. The phase shift of the velocity signal becomes evident by a 
plot of the instantaneous shear surface in figure 29 for t = 640. The tongue-like 
structures appear in a staggered pattern, where the two rows of tongues are shifted 
by half the wavelength L, in the x,-direction according to  (20). As a spike signal 
occurs only at the tip of each tongue the subharmonic behaviour becomes obvious. 
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FIQURE 25. Time-development of the maximum longitudinal r.m.s.-fluctuation a;,,, at various 
spanwise positions in subharmonic transition. 
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FIGURE 26. Distribution of u; in the subharmonic transition. (a) t = 560; ( b )  t = 640. 

Particle visualizations have been computed with the same parameters as for the K- 
type simulation. The process is now periodic with a period of 2TT, instead of TTs. At 
each TollmienSchlichting period TTs A-structures develop downstream of the 
bubble wire, but the spanwise positions of the structures are shifted by g2 in 
subsequent cycles. Thus the experimentally observed staggered pattern occurs. 

Our results on the subharmonic transition suggest that the formation of three- 
dimensional instantaneous flow structures is quite similar to the process observed in 
K-type transition, except for the shift by g2 in the spanwise direction for each cycle. 
This does not exclude the possibility that a different development may take place 
if the subharmonic transition process starts with significantly smaller initial 
disturbance amplitudes, as is the case in some transition experiments. 
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FIGURE 27. Streamlines of the mean secondary flow in subharmonic transition at  t = 640. 
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FIQURE 29. Lines of constant instantaneous shear auJax, = 0.29 in subharmonic transition. 

The region x3 < 1.1 has been suppressed. 

6. Transition control by wave superposition 
We now apply our simulation model to investigate control of the transition process 

by superposition of two-dimensional disturbances. The aim of this active control is 
mainly a transition delay, however, the aspect of transition acceleration will also be 
considered. In this paper we focus our interest on the processes that occur in the 
transitional boundary layer after some means of control has been applied. In 
particular, the reaction of the three-dimensional disturbance parts to the control 
input will be investigated. The details of the control itself are of less interest here. 
Also we discuss only the K-type case as qualitatively the same results are obtained 
in the subharmonic case. As known from the secondary instability theory and from 
simulations, the growth rate of infinitesimal oblique-wave disturbance modes 

FIGURE 28. Instantaneous velocity signals in subharmonic transition a t  t = 640 at -, x2 = 0 
and ---, x2 = &. The vertical scale is arbitrary. 
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depends strongly on the two-dimensional Tollmien-Schlichting wave amplitude, In 
particular, the three-dimensional disturbances may even be damped if the 
TollmienSchlichting amplitude is below a certain threshold value. We also 
investigate cases where the oblique-wave disturbances are no longer small and this 
amplitude dependence is no longer obvious. 

6.1. Control model 
In the experiments referred to in $ 1  the flow is controlled locally within a small 
interval in the downstream direction. Accordingly, in our model, control is 'switched 
on' only within a short time interval t, < t < t,. Outside of this interval the flow 
develops without any external forcing. While in the experiments the control input is 
periodic in time, it is periodic zI in our simulation. Our control algorithm is designed 
to influence directly only the fundamental Tollmien-Schlichting mode (kl, k,) = 
( 1 , O ) .  An inhomogeneous wall boundary condition t )  is specified for the normal 
velocity component, 

U3W("1?t) = uC(t)Re{expi(ol,Sxl+yC)} ( t A  GtB),  (28) 
where uc and yc are given below. This boundary condition may be considered as a 
simple model of a spanwise slot in the wall where fluid is periodically sucked out of 
or blown into the flow, as in the experiment by Strykowski & Sreenivasan (1985). The 
mean flux through the wall is zero. It has been verified that this boundary condition, 
applied to the otherwise undisturbed flow, produces a disturbance which soon 
develops into a Tollmien-Schlichting wave. The amplitude function uc(t) and the 
phase yc in (28) are made dependent on quantities 'detected' a t  the beginning of the 
control interval, t = tA. Amplitude and phase of the Tollmien-Schlichting mode to be 
controlled are derived from the normal velocity component us. We define the 
maximum amplitude 

(29) 

and the phase Y A  = arg43(1,0,z3,tA)3 (30) 

= max I&( 1, 0, z3, tA)I ,  
5 3  

where z3 > 5 is a position just outside the boundary layer, where the phase of the 
Tollmien-Schlichting wave remains nearly constant. The control amplitude is chosen 
as the smooth time function 

uc( t )  = A,- (1 - cos 2 R  - 
+JB - t~ 

and the phase as Y C  = Y A -  '?-?fa (32) 

Here f and'y, have been introduced to relate the quantities detected in the flow field 
to a suitable control input value at the wall. Their values have been optimized to 
obtain maximum amplitude reduction for a two-dimensional Tollmien-Schlichting 
wave. For the range of parameters considered the optimum values have been found 
empirically to be f = 30 and yi = in. Finally, the imposed phase shift is Ay = x 
(antiphased control) for amplitude reduction and A 7  = 0 (in-phase control) for 
amplification. 

The effect of an antiphased control is demonstrated for a typical case in figure 30. 
A purely two-dimensional Tollmien-Schlichting wave with R = 950, uTS = 0.153 and 
an initial amplitude of A,, = 0.001 is controlled during 10 < t < 60, corresponding to 
about half a Tollmien-Schlichting period. At the end of the control interval the 
amplitudes are reduced by a factor of 3. After control the amplitudes decrease 
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FIQURE 30. Time-development of the maximum Fourier amplitudes of a two-dimensional 

TollmienSchlichting wave with antiphased control in 10 < t < 60. 

(4 
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FIQURE 3 1. Phase and amplitude distributions of controlled Tollmien-Schlichting wave. 
-, t = 10; -*-, t = 60 ; ---, t = 250. 

further, down to a factor of 10 below their initial amplitude. Later the wave is 
amplified again in accordance with linear stability theory. Figure 31 shows the 
change of the amplitude and phase distributions which after control gradually relax 
to the initial TollmienSchlichting shape. Thus, the initial disturbance has been 
reduced in amplitude by an order of magnitude after a delay time of about one 
oscillation period, 

6.2. Results and discussion 
We now describe our three-dimensional simulations of controlled transition. The 
parameters and initial conditions are the same as in the uncontrolled K-type 
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FIQURE 32. Time-development of u;,,,~, at -, xz = 0 and ---, x, = & with control in 
850 < t < 900. (a) in-phase; (b) antiphased control. 

simulation of $4 to which the results will be compared. First we consider results of 
two simulations with control during 850 < t < 900, one with in-phase and the other 
with antiphased control. The control interval is placed a t  the beginning of the three- 
dimensional development. The behaviour of the maximum fluctuations at the peak 
and valley positions is shown in figure 32 (for a comparison with the uncontrolled 
case see figure 4). With in-phase control the fluctuations at both spanwise positions 
grow rapidly within the control interval. Thereafter a pronounced three-dimensional 
development sets in, as indicated by the splitting of the two curves. At the peak 
position x2 = 0 the fluctuations grow rapidly and reach typical spike stage values of 
0.15 a t  an earlier time (roughly at t = 1100) than in the uncontrolled case (at 
t = 1260). Thus transition has been accelerated by in-phase control. The antiphased 
contiol reduces the fluctuations and no further growth occurs until t = 1400. 
Transition has been delayed by two-dimensional antiphased control. This case is 
discussed in more detail below. 

Having demonstrated that transition can be delayed in our simulation, we 
investigate now the limitations of the two-dimensional antiphased control. In 
particular, we ask what magnitude the three-dimensional disturbances may have for 
a two-dimensional control still to be successful, and how far transition can be 
delayed. The results of three simulations differing only in the time position of the 
control interval are compared : 

case I :  control in 850 < t < 900, 
case 11: control in 1000 < t < 1050, 
case 111: control in 1150 < t < 1200. 
Case I is the same as shown in figure 32 (b) .  The maximum fluctuations for the three 

cases are shown in figure 33 and compared with the uncontrolled simulation. In  case 
I transition is controlled in an early stage, where the flow is governed by the two- 
dimensional Tollmien-Schlichting wave. After its amplitude has been reduced by the 
control, the transition process proceeds in the same manner as uncontrolled 
transition. This was checked by comparing the flow structures such as ui(x,, x3), the 
mean longitudinal vortex system, and the constant-shear surface with uncontrolled 
transition ,(Laurien 1986), which turned out to be the same. In  case 111 the control 
is applied a t  a developed three-dimensional stage and has only a very weak effect on 
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FIGURE 33. Time-development of at  5% = 0 of ---, the non-controlled case and -, three 
controlled cases: I, control in 850 < t 6 900; 11, control in 1000 d t < 1050; 111, control in 
1150 < t < 1200. 

FIGURE 34. Flow structures in the controlled case I1 at t = 1400. (a) r.m.s. fluctuations; (6) lines 
of constant shear au,/as, = 0.29 ; (c) streamlines of mean secondary flow. 
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FIQURE 35. Development of the maximum Fourier amplitudes ---, of the Tollmien-Schlichting 
wave and -, of the most important fluctuating disturbances. (a) case I ;  (b) case 11; (c) case 
111. 

the fluctuations. The flow structures in the spike stage are almost the same as in 
uncontrolled transition. 

However, in case I1 the structures develop differently. Figure 34 shows the 
structures obtained in case I1 a t  t = 1400, i.e. some time after control. The r.m.s. 
fluctuations are small and show nearly no spanwise variation (figure 34a). The 
instantaneous shear is shown in figure 34(b). There is only a weak streamwise 
waviness, but a strong variation in the spanwise direction. This means that the 
fluctuations, i.e. the variations in xl, are small (see also figure 33 a t  t = 1400). 
However, the mean flow is markedly three-dimensional. The corresponding mean 
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FIGURE 36. Development of the  maximum Fourier amplitudes ---, o f  the Tollmien-Schlichting 
wave and -, of the most important non-fluctuating disturbances. (a) case I ; (b )  case 11 ; (c) case 
111. 

longitudinal vortex system is shown in figure 34(c). It is similar to that observed in 
uncontrolled transition a t  a developed three-dimensional stage t = 1220 (see figure 
6). We did not follow the development of this simulation further than t = 1800 as the 
structures could not be resolved any more by the numerical discretization used in 
this case. 

Fourier amplitudes of the most important three-dimensional fluctuating and non- 
fluctuating disturbance modes are examined for cases 1-111 in figures 35 and 36. In  
addition the Tollmien-Schlichting mode ( 1 , O )  is shown for comparison. In case I the 
three-dimensional disturbances are still much smaller than the two-dimensional ones 
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at the beginning of control. As expected, the three-dimensional growth is reduced 
after control has been applied. Some time later the fluctuating three-dimensional 
mode is even damped. However, this damping occurs only after a delay time of 
roughly 200 time units after the end of control. As the Tollmien-Schlichting wave 
grows again later all disturbances are finally amplified. In case I1 the three- 
dimensional disturbances are still smaller than the two-dimensional ones a t  the 
beginning of control although they are by then larger than in case I. After control the 
three-dimensional amplification is first reduced and then stopped. The (1 , l )  mode is 
even damped after a delay time of about 300. We see that the effect of the control 
on the fluctuating disturbances is much more pronounced than on the non- 
fluctuating disturbances. The latter grow even if the (1 , l )  mode is already damped. 
This is consistent with our observations in figure 34 where the fluctuations are 
reduced but the mean three-dimensionality is still pronounced. In case 111, two- and 
three-dimensional disturbances are of the same order of magnitude at  the beginning 
of control. There is nearly no visible effect of the control on the three-dimensional 
disturbances. 

Our simulations with antiphased disturbances confirm the expected result that a 
two-dimensional active control is more successful if i t  is applied in the early stages 
of the transition process, where the three-dimensional disturbances are still smaller 
than the two-dimensional ones. While the fluctuations can be reduced successfully, 
the mean longitudinal vortex system, once produced in the transition process, 
remains in the flow even after transition has been delayed successfully. Three- 
dimensional disturbances are affected by control only after a time delay once they 
have grown to a finite amplitude, as observed in cases I and 11. We observe that the 
effect on the non-fluctuating three-dimensional disturbances is weaker than on the 
fluctuating disturbances, i.e. the time delay is larger. A two-dimensional control is 
not successful if it is applied in a developed three-dimensional stage where the 
fluctuations exceed the order of 5 % ,  say. Here two- and three-dimensional 
disturbances are of the same order of magnitude and control cannot be successful, as 
the higher harmonic disturbances already grow very rapidly and lead to breakdown 
before control could have an effect, The nonlinear dynamical interaction of two- 
dimensional and fluctuating and non-fluctuating three-dimensional disturbances are 
essential in controlled transition. 

7. Conclusions 
We have simulated numerically the laminar-turbulent transition process and its 

control by wave superposition using a simple model of the Blasius boundary layer. 
In this model the basic flow is assumed to be parallel and constant and the Reynolds 
number is kept fixed. Streamwise and spanwise periodic disturbances developing in 
time are considered. Both the classical Klebanoff-type and the subharmonic type of 
transition are simulated. The simulations are based on the three-dimensional time- 
dependent Navier-Stokes equations. A spectral method with Fourier expansions in 
the horizontal directions and Chebyshev matrix collocation in the normal direction 
is used. The latter becomes efficient through the use of a matrix diagonalization 
technique. The pressure is calculated with the aid of an influence matrix method. We 
simulate laminar-turbulent transition up to the spike stage using a numerical 
discretization with up to 32 x 32 x 48 grid points. 

The simulation results are compared with hot-wire measurements and flow 
visualizations by other authors. We find that the stages of timewise development in 
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our simulations can be related to corresponding stages of the downstream 
development in the experiments. Averaged quantities, such as r.m.s. fluctuations 
and mean secondary flow, and instantaneous quantities have been compared in 
detail for the case of K-type transition. A t  corresponding stages our results agree 
surprisingly well with the experiments. Our visualizations with numerically 
integrated particles give results very similar to experimental hydrogen-bubble 
visualizations for both the K-type and the subharmonic type of transition. 

We can identify the basic mechanisms of the subsequent stages of the boundary- 
layer transition process in our simulations. First the Blasius profile becomes unstable 
with respect to two-dimensional Tollmien-Schlichting waves. This is referred to as 
the primary instability. Once these waves reach a certain threshold amplitude, 
initially small three-dimensional disturbances become amplified. This step can well 
be described by a linear secondary instability theory (Orszag & Patera 1983 ; Herbert 
1983, 1988). Depending on the parameters and initial conditions either the classical 
K-type structures or subharmonic structures appear in the next stages of 
development. The formation of three-dimensional structures in the flow is due to 
nonlinear interactions of finite-amplitude two- and three-dimensional amplified 
disturbances. The instantaneous velocity field can be described using the picture of 
a three-dimensional vortex loop, the so-called ‘horseshoe vortex ’, which is travelling 
downstream with approximately the Tollmien-Schlichting wave speed. On its way 
downstream the horseshoe vortex is stretched and tilted (Orszag & Patera 1983). 
Behind its forward tip the vortex induces a strong instantaneous upward motion, 
transporting slow fluid away from the wall. Thus a region of high shear au,/ax., is 
formed. The instantaneous spikes in the velocity signals are caused by the local 
strong upward motion. As the vortex loop contains significant streamwise vorticity 
the strengthening of the longitudinal vortices can be ascribed to the stretching of the 
vortex loop. 

Our results illuminate the relation of the instantaneous flow field to the structures 
observed in flow visualizations. The well-known folding of the particle sheet near the 
critical layer of a Tollmien-Schlichting wave becomes more and more three- 
dimensional in the velocity field induced by the horseshoe vortex. In a three- 
dimensional stage the folding pattern appears as the so-called A-structure. We note 
that our interpretation of the instantaneous velocity and vorticity field is consistent 
with the explanation given by Williams et al. (1984) for the corresponding 
experimentally obtained data in the case of K-type transition. 

We have applied our simulation model to investigate active control of boundary- 
layer transition by superposition of periodic disturbances. Two-dimensional control 
waves are introduced locally within a small time interval by periodic wall suction and 
blowing. A two-dimensional control can be successful because the amplification of 
small three-dimensional disturbances strongly depends on the amplitude of the two- 
dimensional Tollmien-Schlichting wave. We find that the transition process can be 
controlled even in the presence of three-dimensional disturbances of finite (but not 
too large) amplitude. However, the disturbances are affected by the control input 
only with some time delay. Out-of-phase control delays transition if it is applied in 
an early stage. In later strongly three-dimensional stages, two-dimensional control is 
no longer successful. Even if transition has been successfully delayed, mean 
longitudinal vortices remain in the flow. 

We conclude that the transition process in a Blasius boundary layer up to the one- 
spike stage is well described by our model. Numerical simulation represents a 
powerful tool for investigating transition which, in particular, permits easy access to 
the data of all three-dimensional flow quantities at any stage of development. 
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